Moderate protein intake improves total and regional body composition and insulin sensitivity in overweight adults.
A high protein intake (~40% of energy intake) combined with aerobic and resistance exercise training is more closely associated with improved body composition and cardiovascular risk profile than a traditional protein intake (~15% of intake) combined with moderate-intensity aerobic exercise. However, there is concern that such high-protein diets may adversely affect health. We therefore tested the hypothesis that moderate protein intake (~25% of energy intake) would elicit similar benefits on body composition and metabolic profile as high protein intake. Twenty-four overweight/obese men and women (body mass index [BMI] = 32.2 +/- 3.4, percentage of body fat [%BF] = 37.3 +/- 8.0) were matched for BMI and %BF and randomly assigned to one of 3 groups for a 3-month nutrition/exercise training intervention: (1) high-protein diet (~40% of energy intake) and combined high-intensity resistance and cardiovascular training (HPEx, n = 8, 5 female and 3 male), (2) moderate-protein diet (~25% of energy intake) and combined high-intensity resistance and cardiovascular training (MPEx, n = 8, 5 female and 3 male), or (3) high-protein diet only (HPNx, n = 8, 5 female and 3 male). Total and regional body composition (dual-energy x-ray absorptiometry), insulin sensitivity (insulin sensitivity index to the oral glucose tolerance test), insulin-like growth factor-1 (IGF-1), IGF binding protein-1 (IGFBP-1), IGF binding protein-3 (IGFBP-3), and blood lipids were measured at baseline and after the intervention. All groups experienced significant (P < .05) and similar losses of body weight, BMI, and total and abdominal %BF, and similar improvements in insulin sensitivity (HPEx, 6.3 +/- 1.2 vs 9.5 +/- 0.98; MPEx, 6.2 +/- 1.4 vs 8.4 +/- 1.6; HPNx, 3.7 +/- 1.1 vs 7.0 +/- 1.1; insulin sensitivity index to the oral glucose tolerance test; P < .05) and leptin levels. Furthermore, the HPEx group demonstrated decreases in total cholesterol (TC) and triglycerides, and increases in IGF-1 and IGFBP-1. The MPEx group experienced decreases in TC, whereas the HPNx group had increases in high-density lipoprotein cholesterol, TC to high-density lipoprotein, IGF-1, and IGFBP-1. In conclusion, moderate protein intake elicits similar benefits in body composition and insulin sensitivity as a high-protein diet. These findings may have practical implications for individuals interested in diets containing elevated dietary protein.
Effect of protein intake on strength, body composition and endocrine changes in strength/power athletes. FULL TEXT HERE
ABSTRACT : Comparison of protein intakes on strength, body composition and hormonal changes were examined in 23 experienced collegiate strength/power athletes participating in a 12-week resistance training program. Subjects were stratified into three groups depending upon their daily consumption of protein; below recommended levels (BL; 1.0 - 1.4 g.kg-1.day-1; n = 8), recommended levels (RL; 1.6 - 1.8 g.kg-1.day-1; n = 7) and above recommended levels (AL; > 2.0 g.kg-1.day-1; n = 8). Subjects were assessed for strength [one-repetition maximum (1-RM) bench press and squat] and body composition. Resting blood samples were analyzed for total testosterone, cortisol, growth hormone, and insulin-like growth factor. No differences were seen in energy intake (3,171 +/- 577 kcal) between the groups, and the energy intake for all groups were also below the recommended levels for strength/power athletes. No significant changes were seen in body mass, lean body mass or fat mass in any group. Significant improvements in 1-RM bench press and 1-RM squat were seen in all three groups, however no differences between the groups were observed. Subjects in AL experienced a 22% and 42% greater change in Delta 1-RM squat and Delta 1-RM bench press than subjects in RL, however these differences were not significant. No significant changes were seen in any of the resting hormonal concentrations. The results of this study do not provide support for protein intakes greater than recommended levels in collegiate strength/power athletes for body composition improvements, or alterations in resting hormonal concentrations.
No comments:
Post a Comment