Wednesday, March 7, 2012

How does having weak muscles affect walking?

This study looks interesting.  We often tell people that strength will let them do al things better, being stronger makes everything easier (well I say that in Hillfit anyway)

This abstract is of a study that wanted to test the impact of weak muscles on gait.   They did it through various simulations, but it is still instructive.  Note that you can apparently get away with weak hip and knee extensors but when the plantar flexors (feet), hip abductors, and hip flexors get weak then your walking will be in trouble. 

Think about elderly people if we just got them doing some basic training for these muscles to strengthen them then we could really get their function up. 

How robust is human gait to muscle weakness?

Humans have a remarkable capacity to perform complex movements requiring agility, timing, and strength. Disuse, aging, and disease can lead to a loss of muscle strength, which frequently limits the performance of motor tasks. It is unknown, however, how much weakness can be tolerated before normal daily activities become impaired. This study examines the extent to which lower limb muscles can be weakened before normal walking is affected. We developed muscle-driven simulations of normal walking and then progressively weakened all major muscle groups, one at the time and simultaneously, to evaluate how much weakness could be tolerated before execution of normal gait became impossible. We further examined the compensations that arose as a result of weakening muscles. Our simulations revealed that normal walking is remarkably robust to weakness of some muscles but sensitive to weakness of others. Gait appears most robust to weakness of hip and knee extensors, which can tolerate weakness well and without a substantial increase in muscle stress. In contrast, gait is most sensitive to weakness of plantarflexors, hip abductors, and hip flexors. Weakness of individual muscles results in increased activation of the weak muscle, and in compensatory activation of other muscles. These compensations are generally inefficient, and generate unbalanced joint moments that require compensatory activation in yet other muscles. As a result, total muscle activation increases with weakness as does the cost of walking. By clarifying which muscles are critical to maintaining normal gait, our results provide important insights for developing therapies to prevent or improve gait pathology.


Chuck said...

going barefoot as much as possible will most likely help with foot strength.

Sol Orwell said...

I'd imagine that while barefoot can help, it's more because you are forced to fix the problem (improper foot placement).